Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Type of study
Language
Year range
1.
Electron. j. biotechnol ; 17(1): 4-4, Jan. 2014. ilus, graf, tab
Article in English | LILACS | ID: lil-706518

ABSTRACT

Background: Rice is globally one of the most important food crops, and NaCl stress is a key factor reducing rice yield. Amelioration of NaCl stress was assessed by determining the growth of rice seedlings treated with culture supernatants containing 5-aminolevulinic acid (ALA) secreted by strains of Rhodopseudomonas palustris (TN114 and PP803) and compared to the effects of synthetic ALA (positive control) and no ALA content (negative control). Results: The relative root growth of rice seedlings was determined under NaCl stress (50 mM NaCl), after 21 d of pretreatment. Pretreatments with 1 μM commercial ALA and 10X diluted culture supernatant of strain TN114 (2.57 μM ALA) gave significantly better growth than 10X diluted PP803 supernatant (2.11 μM ALA). Rice growth measured by dry weight under NaCl stress ordered the pretreatments as: commercial ALA N TN114 N PP803 N negative control. NaCl stress strongly decreased total chlorophyll of the plants that correlated with non-photochemical quenching of fluorescence (NPQ). The salt stress also strongly increased hydrogen peroxide (H2O2) concentration in NaCl-stressed plants. The pretreatments were ordered by reduction in H2O2 content under NaCl stress as: commercial ALA N TN114 N PP803 N negative control. The ALA pretreatments incurred remarkable increases of total chlorophyll and antioxidative activities of catalase (CAT), ascorbate peroxide (APx), glutathione reductase (GR) and superoxide dismutase (SOD); under NaCl stress commercial ALA and TN114 had generally stronger effects than PP803. Conclusions: The strain TN114 has potential as a plant growth stimulating bacterium that might enhance rice growth in saline paddy fields at a lower cost than commercial ALA.


Subject(s)
Rhodopseudomonas , Oryza/growth & development , Oryza/enzymology , Aminolevulinic Acid/metabolism , Antioxidants , Photosynthesis , Stress, Physiological , Superoxide Dismutase/metabolism , Catalase/metabolism , Chlorophyll/analysis , Crops, Agricultural , Seedlings , Electron Transport , Salinity , Ascorbate Peroxidases/metabolism , Fluorescence , Glutathione Reductase/metabolism
2.
Electron. j. biotechnol ; 15(6): 7-7, Nov. 2012. ilus, tab
Article in English | LILACS | ID: lil-662205

ABSTRACT

The aims were to explore an appropriate isolating medium for obtaining purple nonsulfur bacteria (PNSB) for use as biofertilizers in saline paddy fields and to obtain pure cultures. We therefore chose a defined isolating medium containing 0.25 percent NaCl, (Glutamate-Acetate broth, GA) and a rice straw broth to compare them for numbers of PNSB obtained, time to obtain pure cultures, diversity and costs. A total of 30 water and 30 sediment samples were collected from saline paddy fields in southern Thailand and used to isolate PNSB in both the isolating media. Based on 60 samples and a period of 13 days incubation under anaerobic light conditions, a greater number of samples produced PNSB growth in GA broth after only day 3; however, after that the rice straw broth provided about a 2 fold increase in the number of samples that produced PNSB growth. Colonies isolated from GA broth required a significantly higher number of repeated streaking to obtain a pure culture (average 3.5) than those from rice straw broth (average 2.7) and the latter medium also produced significantly (P < 0.05) more isolates per sample. Sixty samples of water and sediment, from rice paddies with salinity (average, 3.43 +/- 0.67 mS/cm) and slight acidity (average, pH 5.84 +/- 0.42) provided 62 PNSB isolates by GA broth and 210 isolates by rice straw broth, and rice straw broth also produced a greater prevalence of PNSB. Estimates of the costs based on current prices of media, Gas Pak and electricity to obtain PNSB with the use of GA broth was roughly 6 times higher than for the rice straw broth.


Subject(s)
Culture Media , Fertilizers , Oryza , Rhodospirillaceae/isolation & purification , Bacteria/isolation & purification
3.
Electron. j. biotechnol ; 13(5): 2-3, Sept. 2010. ilus, tab
Article in English | LILACS | ID: lil-591884

ABSTRACT

Lactobacillus plantarum DW3 produced antifungal compounds that inhibited the growth of Rhodotorula mucilaginosa DKA, contaminating yeast in fermented plant beverages (FPBs) and various potential human pathogens. Phenyllactic acid (PLA) identified by gas chromatography- mass spectrometry (GC-MS) was produced at 31 mg/L PLA in MRS medium and 5 mg/ml inhibited growth of the target yeast in vitro by 90 percent. Other inhibitors were also present but not specifically identified. Results of in vitro tests showed that DW3 also had probiotic properties as it survived various human biological barriers resistance to pH 3, bile salts, growth without vitamin B12 and the presence and absence of oxygen. Its inhibitory effect against food borne pathogenic bacteria and spoilage organisms was higher than that found for a commercial strain Lactobacillus casei R. An acute oral toxicity test on ICR mice at a high single dose of either 10(9) and 10(12) cells per mouse for 14 days showed that DW3 had no adverse effect on the general health status and there was no evidence of bacteremia. Mice fed DW3 had a reduced weight gain compared to the control. No significant difference (p > 0.05) was found for the spleen weight index (SWI) among the treatment and control groups whereas there was a significant difference (p < 0.05) for the liver weight ratio (LWR) in a group fed with 10(12) cells per mouse when compared with the control group.


Subject(s)
Animals , Mice , Antifungal Agents/pharmacology , Beverages/microbiology , Lactobacillus plantarum/chemistry , Rhodotorula , Antifungal Agents/chemistry , Chromatography, High Pressure Liquid , Fermentation , Food Microbiology , Gas Chromatography-Mass Spectrometry , Lactic Acid , Probiotics/chemistry
4.
Electron. j. biotechnol ; 13(1): 8-9, Jan. 2010. ilus, tab
Article in English | LILACS | ID: lil-559591

ABSTRACT

Pseudomonas sp. W3, a bacterium known to produce an extracellular alkaline protease, secreted secondary metabolites that inhibited pathogenic bacteria responsible for shrimp luminous vibriosis disease. Antivibrio compounds in the culture supernatant or culture filtrates (0.45 um and 0.22 um) of the isolate W3 were tested using an agar well diffusion method on a number of pathogenic vibrios. Vibrio harveyi PSU 2015 a pathogenic isolate was the most sensitive strain. The effectiveness of preparations from the isolate W3 against V. harveyi PSU 2015, and V. cholerae PSSCMI 0062 was in the order of culture supernatant > 0.45 um culture filtrate > 0.22 um culture filtrate. These extracellular antivibrio compounds also lysed both dead and living cells of V. harveyi PSU 2015. Results of the partial characterization tests indicated that there was some particulate antivibrio compound that was destroyed by treatment with enzymes particularly alpha-chymotrypsin, autoclaving at 121ºC for 15 min and was mostly removed by filtration through a 0.22 µm filter. Most of the inhibitory compounds were of small molecular weight able to pass through a 0.22 um filter and were resistant to treatment with various enzymes, pH values between 4-8 and temperatures up to 121ºC for 30 min. The optimum pH for the antivibrio activity in the 0.45 um culture filtrate was between pH 6-7.


Subject(s)
Animals , Decapoda , Decapoda , Decapoda/metabolism , Decapoda/microbiology , Pseudomonas , Pseudomonas/metabolism , Vibrio Infections/microbiology , Vibrio Infections/drug therapy , Chloramphenicol/therapeutic use , Furazolidone/therapeutic use , Culture Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL